首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83667篇
  免费   1003篇
  国内免费   407篇
电工技术   776篇
综合类   2316篇
化学工业   11415篇
金属工艺   4756篇
机械仪表   3014篇
建筑科学   2154篇
矿业工程   562篇
能源动力   1104篇
轻工业   3618篇
水利工程   1267篇
石油天然气   341篇
无线电   9240篇
一般工业技术   16289篇
冶金工业   2622篇
原子能技术   255篇
自动化技术   25348篇
  2023年   3篇
  2021年   15篇
  2020年   9篇
  2019年   9篇
  2018年   14457篇
  2017年   13383篇
  2016年   9966篇
  2015年   613篇
  2014年   232篇
  2013年   198篇
  2012年   3141篇
  2011年   9405篇
  2010年   8280篇
  2009年   5544篇
  2008年   6777篇
  2007年   7779篇
  2006年   123篇
  2005年   1207篇
  2004年   1123篇
  2003年   1167篇
  2002年   536篇
  2001年   96篇
  2000年   177篇
  1999年   60篇
  1998年   55篇
  1997年   27篇
  1996年   47篇
  1995年   10篇
  1994年   13篇
  1993年   9篇
  1992年   12篇
  1991年   23篇
  1989年   2篇
  1988年   9篇
  1969年   24篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1964年   11篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
71.
It is well-known that polymer nanocomposites can bring about superior mechanical, thermal, optical, physical, and chemical properties in comparison with pure polymers. In this study, different contents of unmodified silica nanoparticles (Si-Un), surface modified nano-silica by octylsilane (Si-OS), and surface modified nano-silica by polydimethylsiloxane (Si-PDMS) are added to the polyurethane (PU) matrix and their effects on the physical properties of the polymer examined. The experimental results indicate that most of the nanocomposites have a higher tensile strength and elongation. In addition, hyperelastic energy function models have been used to model the stress-strain relation of the nanocomposites. In this study, Mooney-Rivlin, neo-Hookean, Rivlin general polynomial, and Davies-De Thomas (DDT) models have been investigated, possessing respectively, two, one, eight, and three constants to be determined. The differential evolution (DE) optimization method, a strong heuristic optimization algorithm, has been used to find the constants; in which the absolute summation of the differences between the models’ predictions and experimental data is taken into account as the objective function and the models’ constants are considered as the decision variables. Moreover, equation constants are found by using regression, an indicator of DE optimization superiority. The results show that even though the Rivlin general polynomial model provides the most accurate prediction, the DDT model, consisting of three constants, can be considered as the most acceptable one.  相似文献   
72.
The distribution characteristic and segregation behavior of metal impurities during directional solidification of Al-20Si, Al-30Si and Al-40Si alloys have been investigated. The morphologies of the alloys and impurity phases were observed by optical microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The concentration profiles of representative metal impurities Al, Fe and Ti were measured by inductively coupled plasma optical emission spectrometry. The results indicate that the metal impurities segregate into the eutectic Al-Si melt during the growth of primary Si flakes and gradually segregate towards the top of each ingot during directional solidification. A concept of apparent segregation coefficient is proposed to characterize the segregation behavior of impurity elements. The apparent segregation coefficients of metal impurities decrease with increase in solidification temperature of the Al-Si alloys.  相似文献   
73.
In this work, highly-pure silicon oxide nanostructures were prepared by a closed-field unbalanced magnetron plasma sputtering technique. These nanostructures were characterized by Fourier-transform infrared spectroscopy, UV-visible spectroscopy, x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectroscopy and atomic force microscopy in order to determine the optimum preparation conditions. Minimum particle size of 20 nm was determined for the samples prepared at an inter-electrode distance of 4 cm, Ar:O2 gas mixing ratio of 70:30, total gas pressure of 0.08 torr, discharge voltage of 2.5 kV, discharge current of 35 mA, anode temperature of 27 °C (room temperature) and cathode temperature of about 40 °C. These conditions are optimized to control the structural characteristics of such nanostructures and hence to satisfy certain requirements and purposes in spectroscopic and photonic applications of SiO2 nanostructures.  相似文献   
74.
An agriglass composition containing different oxides acts as a slow release for macro and micro nutrients and was chosen to improve maize yield under most important abiotic stresses which affecting agriculture development; salinity and drought. A field experiment was performed in salt affected soil (EC =?7.5 dSm??1) by using different water deficit rates (I1 = 100, I2 = 85 and I3 = 70% of maize water requirements). Irrigation levels were located in main plots. Every main-plot divided into six sub-plots contained glassy fertilizer treatments [F1 = 55 kg fed?1 with 1/2 mm diameter of agriglass (fed. =?4200 m2), F2 = 55 kg fed?1 with 1 mm diameter, F3 = 80 kg fed?1 with 1/2 mm diameter, F4 = 80 kg fed?1 with 1 mm diameter, F5 = Recommendations of Ministry of Agriculture and F6 = control]. The experimental results demonstrated that, ears, straw, grains and biological yields increased with increasing both water and agriglass rates. Application of agriglass as a slow release fertilizer improved yield more than mineral fertilizer. Some growth parameters, water use efficiency (IWUE), macronutrients concentration and their relations were included. Other studies on residual effect of agriglass and the annual application rates to withstand salinity and drought stress by strategic crops are required.  相似文献   
75.
Mono and disubstituted 2,3-dihydroquinazolin-4(1H)-ones were obtained in good yields via a one-pot, three component reaction of isatoic anhydride and aromatic aldehydes with ammonium acetate or primary amines in the presence of perchlorated zirconia (HClO4/ZrO2) nano particles as an efficient solid acid catalyst under solvent-free conditions. Simple workup and reusability of the catalyst are advantages of this method.  相似文献   
76.
Graphite carbon nitride (g-C3N4) is well known as one of the most promising materials for photocatalytic activities, such as CO2 reduction and water splitting, and environmental remediation through the removal of organic pollutants. On the other hand, carbon nitride also pose outstanding properties and extensive application forecasts in the aspect of field emission properties. In this mini review, the novel structure, synthesis and preparation techniques of full-bodied g-C3N4-based composite and films were revealed. This mini review discussed contemporary advancement in the structure, synthesis, and diverse methods used for preparing g-C3N4 nanostructured materials. The present study gives an account of full knowledge of the use of the exceptional structural and properties, and the preparation techniques of graphite carbon nitride (g-C3N4) and its applications.  相似文献   
77.
The demand for general reduction of the energy consumption in civil engineering leads to more frequent use of insulating materials with air gaps or cavities. Heat transfer through a constructional part can be decreased by adding an air gap and low emissivity reflective foils to the structure. In the first part of this paper, the impacts of cavity thickness and inner surface emissivity on combined conduction, convection and radiation heat transfer was experimentally explored in the case of constructional part with a horizontal cavity subjected to constant downward heat flux. The heat flow meter Netzsch HFM 436 Lambda was used for steady-state measurements. Results suggest that the studied parameters seriously affect the combined heat transfer in the composed structure. In the second part the paper reports the numerical study of two-dimensional conjugate heat transfer in closed horizontal cavity having air as the intervening medium. Numerical models validated by related experimental results were performed to further investigate the effect of radiation heat transfer. It was found that in general, the total heat flux through the composed structure decreases with increasing air cavity thickness, which is significant especially when low emissivity inner surfaces are taking into account. The direction of heat flow (downward or upward heat flow) has a significant impact on the convection heat transfer. An important contribution from the present work is the analysis of the optimal thickness of the cavity at different boundary conditions. The optimal thickness of the enclosure with low emissivity surfaces is 16 mm when subjected to upward heat flux.  相似文献   
78.
An optimization design method is presented to reduce the undesirable vibrations caused by clearance for planar linkage mechanism. A clearance joint is defined and considered a contact/impact force constraint. Contact and impact force models for the clearance joint are established using a normal contact force model based on Hertz model with energy loss and a tangential friction model based on modified Coulomb model with dynamic friction coefficient, respectively. In view of the clearance joint, dynamic equations and optimization method for a planar four-bar mechanism are then presented as an application example. The optimization aims to minimize the maximum absolute acceleration peaks of the mechanism by determining the link lengths of the planar linkage mechanism. Finally, the optimization design is solved by a generalized reduced gradient algorithm. Results show evident decrease in vibration peaks of the mechanism and obvious reduction in the contact forces in the clearance joint, which contribute to a good performance of planar linkage mechanism systems.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号